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SYSTEM PARAMETERS INVESTIGATION
FOR STEFAN PROBLEM SOLVING BY THE CONTINUOUS
ASYNCHRONOUS CELLULAR AUTOMATA METHOD

The main object of this work is to construct a cellular automaton (CA) model of heat conductivity
processes with first order phase transitions. The paper discusses main approaches and general meth-
odology for development of cellular automata models. The studies were conducted on the example of
cellular automata to model moving phase boundary problems for freezing of moist soil, the process of
band Bi2Te3 growing and changing forms of solidification front. It is shown that the CA models can
be an alternative to the use of classical differential equations. It is proven that the model as a system
of cellular automata is quite a convenient tool for the study of nonlinear heat transfer problems,
despite the simplicity of its description, and may describe very complex system behaviour.
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Introduction

The matter of solving heat conductivity prob-
lems is quite important, especially for cases with
non-linear parameters of materials. For the majority
of these problems, a numerical solution is a common
approach. But when it comes to systems with com-
plex boundary conditions or phase transitions of the
substance, the computational complexity makes us
look for alternative methods. Cellular automata algo-
rithm easily describes such complex systems.

1. Related works

In recent years, alternative approaches to numer-
ical methods for problems of heat conductivity and
diffusion are widely used. Cellular automata algo-
rithms are quite successfully used [1, p. 58; 2, p. 497]
for this purpose. It should be noted that discrete mod-
els are used in most cases for calculation of diffusion
processes [3, p. 1019], and continuous models of
cellular automata [4, p. 127; 5, p. 266] are used to
approximate heat transfer processes.

A lot of attention of researchers in the field of solid
state physics is directed towards the study of prob-
lem of structural parameters of real materials with
different physical nature and different spatial dimen-
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sions. In such cases, it makes sense to use modelling
techniques that easily describe complexity of system
geometry [1, p. 69]. Cellular automata simulation has
this property. The purpose of this paper is to develop
a model of continuous cellular automata and use it to
describe the processes of heat conductivity compli-
cated by a first order phase transition.

2. Cellular Automata Model Description

The description of systems with complex bound-
ary conditions or phase transition is in many cases
difficult. This is due to the fact that a numerical solu-
tion of this problem is quite difficult to obtain because
of the large number of calculations.

An example is the problem of describing such
complex phenomena as evolution and self-organiza-
tion, diffusion and thermal conductivity. Let us con-
sider the last process, complicating it by first order
phase transition. This task belongs to the class of
so-called Stefan problems.

Mathematical formulation of Stefan problem for a
three-dimensional case is:
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T,, agand &, kg and K, cgand ¢, pgand P, —
accordingly: temperature, thermal diffusivity, ther-
mal conductivity, specific heat capacity, specific den-
sity of the solid and liquid phases; Hf — latent heat of
fusion; & — coordinate of the interface of two phases.
Specific density symbol P(./s) on the right side of
equation (3) means that the corresponding value of
liquid /solid phase is selected depending on the direc-
tion of the phase transition — crystallisation /melting.

Heat conduction, described by the equation (1)-(3)
may be modelled by cellular automata method. But
for organizations quantitative calculations it is nec-
essary to answer the question how much you should
make cellular automata interactions for the resulting
temperature distribution could be considered as solu-
tion of the problem in time ¢.

The essence of modeling of heat conduction using
cellular automata is as follows. We partition the sam-
ple into a plurality of identical the same way intercon-
nected cells. All cells form the so-called lattice cellular
automaton. Lattices may be of different dimensions
(the one-, two-or three-dimensional array), depend-
ing on the dimension of the modelled system.

In the case of modeling complex phenomena
involving phase transitions or other changes, the con-
tents of the cells of cellular automata field may be
a single linear array of certain characteristics of the
cell which, in turn, except temperature (for modeling
thermal conductivity) and concentration (for diffu-
sion processes) may contain some other parameters,
such as the index of the state of matter, the internal
energy and the like.
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Fig. 1. Structure of the cellular automata field
for a two-dimensional model

Consider, for clarity, two-dimensional field CA
(Fig. 1), which contains three layers: 1 — tempera-
ture of T cells, 2 — H internal heat, which takes into
account in the modeling of phase transitions, 3 —index
substance / (or states of matter, such as monocrystal,
polycrystal, melt) which is taken into account when
selecting the values of the coefficients of thermal
conductivity, specific heat and density in the corre-
sponding point of the system. The cell contents of the
field can make the real continuous values.

Area of the cell is determined by the dimension of
the field of cellular automata, in accordance with the
geometrical dimensions of the fragment of the simu-
lated system.

Cellular automata can be realized in different
ways. In this paper we use asynchronous scheme of
interactions of cellular automata, providing cyclic
execution of three typical steps:

1. Some cell i = 1 with integer coordinates x,, y,; is
selected randomly on a cellular automata field.

2. A neighbouring cell i = 2 with integer coordi-
nates x,, y, is selected in an equiprobable way. The
Neumann neighbourhood is accepted as a neighbour-
hood scheme in this case, i.e. a cell has only four
neighbours.

3. A cellular automata interaction between the two
cells takes place.

The described method of continuous asynchro-
nous cellular automata can be applied to solve prob-
lems of heat conduction. In particular, it is shown in
[6, p. 97].

The essence of cellular automata interactions is to
modify the values of corresponding continuous layers
of cells according to the following system of equa-
tions:

7= T 4T, = T )an /e
if (7> 7; )Jand(H' < H,) then{H’'= H' + &i(r-T} 7= 7.}
if (7> H,)  then{r’"= T"+(H/"~H,)1c}; H'= H,,}
if (17'< TF) and (H'>0) then{H"=H'+d(r-1}7"=7,}
if (H7'< 0) then{r"'= T"+H"" /¢ H''= 0}
1 2
a,=(a+a2)2 a=/pd ™= W:;:l:;r
w = p’c’ , 4)
where a —thermal diffusivity i = 1, 2 —index value
that corresponds to the selected cell and the adjacent
cell with coordinates (x/, y') and (x?, y?) respectively.
Values at the next moment are stroke-marked.

The first equation of system (4) is a cellular autom-
aton analogue of the heat equation (1) and (2) which
has been investigated in [7, p. 294], the rest of the
equation in (4) — approximation of equation (3), the
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second and third equations of system (4) describes
the process of melting, and the fourth and fifth — the
process of crystallization.

The system of equations (4) describes the change
of temperature and latent melting heat of the respec-
tive cells during one elementary interaction of cellu-
lar automata. It is a kind of Stefan problem numerical
solution approximation (1-3).

3. Calculation Results Analysis

It is necessary to define the parameters accuracy
of the approximation depend on and their influence
on it. This will prove as viable modeling of heat con-
duction by cellular automata method.

For simplicity, consider a one-dimensional homo-
geneous sample [7, p. 297]. We will take the coeffi-
cients of thermal diffusivity equal to a constant. (1)
becomes in this case:

aT(xt) _ _aT*(x1) __ k
— a o a__
ot X I

From solution of the equation (5), in the area of
substance with length d comes up some value — the
characteristic time of establishing of the temperature
in the system:
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We try to estimate the time of single cellular autom-
ata interaction for described above asynchronous
approach. We assume d =1, @ =1. Then the character-
istic size of a single cell d ~1/ N, where n— number
of cells cellular automata field. On the other hand, the
probability of selection of cells for the interaction act
as equals 1/ N. That is to provide a choice of given
cell it should be implemented in the average N sam-
pling from the total population. By analogy with the

process of mass transfer in the diffusion, where the dif-
fusion coefficient is directly proportional to the num-
ber of elementary acts of mass transfer per unit time we
obtain a ~ N . Using (6), we obtain:
1
teq ~ }GE, (7

Confirmation of the statement (7) is possible by
means of computer simulation, which consists in
comparing the cellular automaton dynamics with dif-
ferent numbers of cells of cellular automata field with
a particular solution of equation (5). Based on this
experiment, temperature distribution T(x.f) was con-
structed in a range X€ [0.1] in different time points.

In parallel with calculations was performed the
cellular automata simulation of the heat transfer.
In cases where the maximum similarity, which was
analyzed by the method of least squares on the set of
control points, was fixed number of cellular automata
interactions.

By analyzing results of computational experi-
ments it is possible to confirm the validity of relation
(7), as well as get a proportionality factor.

Thus, time of a cellular automata interactions for
the described method is for three-dimensional model

(N, %N, xN.):
d? 1 d; 1 d 1

[eq = '_\"' ) = _l— 3 = _F/— 3 5 (8)
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whered,, d , and d, - the dimensions of the
sample along coordinate x, y and z, respectively.

At figure 2 is shows a high degree of coincidence
of solutions, which confirms the adequacy of the use
of cellular automata approach for approximation of the
solution of nonstationary heat conduction equation.

From the foregoing it can be concluded that the
dimension of cellular automata field must be as large
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Fig. 2. Temperature distribution in the sample at time
t=0,01s (N = 500). Smooth line - decision by the
formula (5), broken - cellular automata decision
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Fig. 3. Temperature distribution
over the depth of the soil
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as possible to ensure the adequacy of the modeling
process. On the other hand, it will necessarily lead
to long-term modeling process. Therefore, it is need
to look for compromise between the accuracy of the
solution and the time required to obtain it to solve
this problem. With this shortcoming of the proposed
method it can be overcome by using parallel comput-
ing [8, p. 341], since their principles apply to cellular
automata and can significantly increase the size of the
model.

By drawing an analogy between the CA method
and Monte Carlo simulation, it is easy to notice a sim-
ilar relationship — the longer the computation time,
the more accurate the result. Herewith, as in the case
of proposed probabilistic scheme of asynchronous
sampling of cellular automata, use of probabilis-
tic mechanisms also takes place in the Monte Carlo
method. But unlike the Monte Carlo method for solv-
ing equations, cellular automata method is a method
of simulation and it can be used to model systems that
can not be described in terms of theory of differential
equations [1, p. 93].

Further improvement of the proposed cellular
automata method results in a need to consider the
processes of thermal conductivity, accompanied by
first order phase transitions. Let’s proceed to con-
sider a non-stationary task of the process of thermal
conductivity with first order phase transition i.e., the
Stefan problem — freezing of moist soil. Let the moist
ground is in thawed state. At the initial moment t =
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Fig. 4. Temperature distribution along the diagonal
section of the cylinder (solid line) and along the cross
section of the square bar (dotted lines)
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Fig. 5. Example of simulation of a zone growing Bi,Te,

0 it has a uniform temperature T=20 ° C. Also on
the soil surface at the initial moment temperature is
instantly set below the freezing point T = -5 ° C. As
a result, there will be a freezing. Formed frozen layer
will have a variable thickness § = f{?). Its movable
boundary always has a freezing point. At this bound-
ary take place transition from one state to another,
which takes the heat of transition H, (J/kg). Thus,
the boundary x = ¢ of the melt zone has a constant
freezing temperature and the thermal conditions on
the boundary x = L we assume adiabatic. Assume
the depth of soil equal to L = 0,3 m. Calculations of
temperature distributions in the depth of the soil were
performed at various time points by using the cel-
lular automata approach. The results of calculations
for one-dimensional (N, = 500), two-dimensional
(N,xN, = 500x100) and three-dimensional (N, <N x
N, = 500x10x10) CA models along the x axis are
shown in Fig.3.

Models of different dimensions agree with one
another and with the corresponding results of numer-
ical solutions of equations (1) — (3) for a given prob-
lem of freezing of moist soil [6, p. 35].

Another example of the Stefan problem was
examined in this paper. The process of zone growing
of materials was modelled on the example of bismuth
telluride (Bi,Te;). In practice, zone growing of mate-
rials often occurs in cylindrical quartz ampoules. For
realization of cellular automaton model of the growth
process, the cylindrical symmetry of the system (by
including the multiplier (1+7®) in (4) for weight coef-
ficient) was taken into account, which made it possi-
ble to reduce a three-dimensional model to a two-di-
mensional one and by that reduce the computing time
with other parameters of the model being constant. So
the expression becomes: w = p'c’ (] +TIR' ) where R' —
the distance from the axis of the cylinder to the i-th
cell. Please note that the parametersa,,, @.x> fca
, H; does not depend on the multiplier, since the ther-
mal parameters of the material does not change. To
test our hypothesis, execute the computational exper-
iments to cool square-section bar D x D and cylinder
of diameter D. Significant discrepancies for the dis-
tribution of temperature of the bar and the cylinder
in different times are shown at Fig. 4. But solutions
completely coincide if we consider the multiplier.

Thus it is possible to realize a two-dimensional
cellular automata model of zone growing materi-
als in cylindrically symmetric quartz ampoules. An
example of modelling the process of growing zone
Bi,Te, is shown at Fig. 5. Parameters that provide
a flat crystallization front have also been obtained
and empirically confirmed [7, p. 298]. Their receipt
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ensured uniformity of physical parameters along the
cross-section of the ingots. Equality of real and model
growth parameters, in which there is a flat crystalli-
zation front [7, p. 300] demonstrates the adequacy of
the described cellular automata approach.
Conclusion. Cellular automata model that describes
the processes of thermal conductivity, accompanied
by first order phase transitions was also presented.
Parameters that provide the plane crystallization front
in itinerant growing of semiconductor materials and

at different times moments for problem of freezing of
moist soil were obtained and empirically validated.

As a conclusion, we note that the proposed
method can be a worthy alternative to the previously
known classical methods of Stefan problems solving
and has prospects due to its versatility and simplic-
ity. It implies that the method of continuous cellular
automata can be used for description of dependence
of the phase transition temperature on composition
and modelling of instability of crystallization front.

the temperature distribution along the depth of the soil
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JOCIIIKEHHS ITAPAMETPIB CUCTEMMU JAJ1s1 BUPIHIEHHA 3A JTAUT

CTE®AHA 3A JOIIOMOI'OI0O METOA1Y ACUHXPOHHUX KJITUHHUX ABTOMATIB

Cmamms npucesyena no6y0osi kiimunno-asmomamnoi mooeni (KA) npoyecie mennronpogionocmi 3 paso-
BUMU Nepexo0amu nepuiozo pody. ¥ pobomi po32isaHymo OCHO8HI NiOX00U Md 3a2aibHy Memoooio2iio po3-
POOKU KITMUHHO-ABMOMAMHUX MOoOeNell. OCTIONHCEeHHS NPOBOOUNUC MEMOOOM KIIMUHHUX AGMOMAMIE 015
MOOeNOBanH s 3a0a4 i3 pyXoMum ()poHmom po30iny (az Ha npuxkiadi 3a0ayi nPOMep3aHHs 601020 IPYHNTY ma
3miHu ghopm poumy kpucmanizaii ¢ npoyeci supowysanns Bi2Te3. Iokazano, wo KA-moodeni mosxcymo 6ymu
AIIMEPHAMUBOI) BUKOPUCHIAHHIO KIACUYHUX OUDepeHyianbHuX pieHAHb. JlogedeHo, wo Modenb K cucmema
KAIMUHHUX a8MOMAmie € 00CUMb 3PYYHUM THCMPYMEHMOM O UBYEHHS HENIHIUHUX 3a0ay menjionpogio-
HOCMI, He38aXMCalOYU Ha NPOCMOMY il ORUCY, I MOdCce ONUCY8aMU OVHCce CKIAOHY NOBEOIHK)Y CUCTEMU.

Knrouosi cnosa: ¢hazosuti nepexio nepuioco pooy, KiimunHull agmomam, menjionposionicms, 3adava Cme-
(hana, 301He BUPOWYYBANHSL.

HNCCIEJOBAHUE ITAPAMETPOB CUCTEMBI IUIs1 PEIHEHUSA 3A TAY N

CTE®AHA C ITIOMOIIBIO METOIA ACHHXPOHHBIX KJIETOYHBIX ABTOMATOB

Cmambws nocesiuena nocmpoeHuio Kiemodro-asmomamnou mooenu (KA) npoyeccoe mennonposoonocmu ¢ gpazo-
BbLMU nEpexooamu nepeoeo pooa. B pabome paccmomperbl 0cHOBHbIE N00X00bL U 00WAst MEMOOOT02USL PASPAOOMKU
KAEMOYHO-A8MOMAmHbIx Mooenetl. HMlccnedosanus nposoouucs Memooom Kienmo4HblX asnmomamos st MOOeUpOo6a-
HUsL 30044 ¢ NOOBUMNCHBIM (hpoHmom pasiena ¢haz Ha npumepe 3a0auy RPOMEP3AHUSA BIIANCHOL0 SPYHMA U UIMEHEHUS
dopv ¢hpponma kpucmanuzauu 8 npoyecce svipawusanus BulTe3. Toxazano, umo KA-modemu mocym 6vims anb-
MEPHAMUBOL UCTIOTL308AHUIO KIACCUHECKUX OUGDPEpeHYUATbHbIX YPagHeHull. [JoKa3aHo, Ymo Mo0elb KaK cucmema
KJLEMOUHbIX AGMOMAMO8 AGTIAEMCS 00CHAMOYHO YOOOHLIM UHCHIPYMEHNOM OISl U3VUEeHUsL HETUHENHbIX 3a0ad Menio-
NPOBOOHOCU, HECMOMPSL HA NPOCTIONY €€ ONUCAHUSL, U MOXNCEM ONUCHIBANb OYEHb CTIONCHOE NOBEOCHUE CUCINEMbL.

Knrwouesvie cnosa: ¢asoswiil nepexod nepeoco pooa, Kiemounvlii agmomam, menjionposooHocms, 3a0aya
Cmeghana, 30nnoe evipawjusanie.
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